
Max Flow: Capacity Scaling

Assume that all capacities c(e) are integers. Here we give an algorithm that takes
O(m2 logC) time, where C = maxe∈E c(e). We define a subgraph of the residual graph
Gf as follows: Gf (∆) keeps only those edges satisfying r(e) ≥ δ. Notice thatGf (1) = Gf .

Initially, let ∆ = 2blgCc. Our algorithm can be described as follows.

As long as there is a s-t path in Gf (∆), augment as much flow as possible
along such a path. When there is no more s-t path, divide ∆ by 2. In case
that ∆ < 1, we stop the algorithm.

Let us call a sequence of augmentations an epoch when ∆ is fixed. The following
observation is critical:

Lemma 1. Each epoch has at most 4m pushes.

Proof. We first make the following observation: when an epoch stops, the maximum flow
is at most 2m∆ larger than the actual flow f . To see this, note that when this epoch
stops, Gf (∆) is separated into two parts (U,U), where s ∈ U and t ∈ U . For every edge
e ∈ δ+(U), r(e) = c(e)− f(e) < ∆; conversely, e ∈ δ−(U), r(e) = f(e) < ∆. Therefore,
denoting the actual and maximum flow values by v(f) and v∗ respectively,

v(f) =
∑

e∈δ+(U)

f(e)−
∑

e∈δ−(U)

f(e) >
∑

e∈∆+U

c(e)− 2m∆ ≥ v∗ − 2m∆.

where the last inequality we use the duality that a cut is always an upper bound of v∗.
In the next epoch, as each push augments the flow value by at least ∆/2, we conclude

that an epoch has at most 4m pushes.

The correctness of the algorithm is easy to see, since Gf (1) = Gf . After the last
epoch, we essentially have no more augmenting path in Gf , thus having the same stop-
ping condition as Ford-Fulkerson.

Finally, as there can be only O(lgC) epochs and each push needs O(m) to reconstruct
the residual network, we conclude that this algorithm takes O(m2 lgC) time.

Application: A Theorem about Matrix

The following theorem does not have a specific name. It has a very elegant proof due
to Lex Schrijver. Let A be a n-by-n {0, 1} matrix, where each row and each column has
exactly k ones. Then given any integer h, 1 ≤ h < k, there exists another matrix A′, in
which every row and every column has exactly h ones. Furthermore, A′(i, j) = 1 only if
A(i, j) = 1. We now present a proof based on max-flow-min-cut theorem.

Construct a flow network as follows. Source s has a directed edge to each column
node with capacity k. The column node i has a directed edge to row node j if and only if
A(i, j) = 1. The capacity for such an edge is 1. Finally, the row node has a directed edge

1



to t with capacity k. It is easy to see that the network has a max-flow of value nk. Now
we modify the flow by multiplying it with h/k and change the capacity of edges from s
to column nodes and from row nodes to t from k to h. The flow is still a max-flow in
the new network (why?) and its value is hn, although it is not an integral flow. Recall
that if all edge capacities are integers, we always have an integral maximum flow (whose
value is hn in this case). The ”integral” flow yields the matrix A′ that we want.

2


